
ar
X

iv
:h

ep
-p

h/
01

03
17

7v
1

 1
5

M
ar

 2
00

1

YITP-SB-01-10

Evolution program for parton densities with
perturbative heavy flavor boundary conditions

A. Chuvakin, J. Smith
C.N. Yang Institute for Theoretical Physics,

State University of New York at Stony Brook, New York 11794-3840.

February 2001

Abstract

A new code for the scale evolution of modified-minimal-subtraction-scheme
parton densities is described. Through next-to-leading order the program uses
exact splitting functions. In next-to-next-to-leading order approximate split-
ting functions are used. For efficiency the program includes analytical results
for the evaluation of the weights required for the integrations over the lon-
gitudinal momentum fractions of the partons. It also incorporates the opera-
tor matrix elements required for the matching conditions across heavy flavor
thresholds in higher order perturbation theory. The more efficient handling of
the weights implies that the code is faster than similar evolution codes in all
modes of operation. The program is written in the C programming language.

PACS numbers: 11.10Jj, 12.38Bx, 13.60Hb, 13.87Ce.

1

http://arXiv.org/abs/hep-ph/0103177v1

Contents

1 Program Summary 3

2 Introduction 5

3 The evolution equations 8

3.1 Definitions of densities 8

3.2 The evolution equations 8

4 Direct x-space method of solution and initial conditions 12

4.1 The method 12

4.2 The initial conditions 15

4.3 The calculation of the running coupling 16

4.4 The evolution process 16

5 Input parameter description and usage 19

6 Description of the program 23

6.1 Program module summary 23

6.2 main.c 23

6.3 l-a-w.c 24

6.4 nl-a-w.c 24

6.5 alpha.c 25

6.6 init.c 25

6.7 polylo.c 25

6.8 intpol.c 26

6.9 evolver.c 26

6.10 thresh.c 26

6.11 a-coefs.c 27

6.12 loader.c 27

2

6.13 quadrat.c 28

6.14 daind.c 28

6.15 integrands.c 28

6.16 grids.c 29

6.17 weights.c 29

6.18 nnl-a-w.c 29

6.19 wgplg.c 30

7 Results 31

8 Error code descriptions 37

9 Conclusions 38

10 Acknowledgments 38

A Appendix A 39

B Appendix B 42

References 46

1 Program Summary

Title of Program: ADENS
Computer: AlphaStation 4/500
Operating system: OSF V3.2
Programming language: C
Number of lines in distributed program: 11658
Keywords: parton density, evolution, numerical solution, splitting function,
next-to-next-to-leading order
Nature of physical problem: solution of the parton density evolution equations
with LO, NLO and NNLO splitting functions and NLO, NNLO heavy flavor
threshold matching conditions
Method of solution: x-space integration with analytic evaluation of weights
Typical running time: see table in Section 7
The program www site:

http://insti.physics.sunysb.edu/∼chuvakin/adens-24.0.tar.gz

3

http://insti.physics.sunysb.edu/∼smith/adens-24.0.tar.gz

4

Contents

2 Introduction

Deep-inelastic lepton-hadron scattering experiments probe the internal struc-
ture of hadrons. The lepton-hadron inclusive cross sections may be written
in terms of structure functions, which depend on the virtuality of the probe
Q2. Three structure functions F1, F2 and FL are necessary to describe neu-
tral current (photon and Z-boson exchange) and charged current (W -boson
exchange) reactions. In perturbative quantum chromodynamics (pQCD) the
probe interacts with partonic constituents of the hadron. There are probability
densities f(x, µ2) to find partons carrying a fraction x (0 < x ≤ 1) of the lon-
gitudinal momentum of the hadron at a mass factorization scale µ. Therefore
the Fi, i = 1, 2, L also depend on x and µ.

The operator product expansion (OPE) allows the structure functions to be
written as convolutions of the parton (quark and gluon) probability densities
with partonic hard scattering cross sections (or coefficient functions). The lat-
ter can be calculated in pQCD. Even though the former cannot be calculated in
pQCD, their µ dependence is determined by a set of integro-differential equa-
tions, the (Dokshitzer-Gribov-Lipatov)-Altarelli-Parisi evolution equations [1],
which follow from renormalization group analysis. Discussions of the pQCD
description of deep inelastic scattering reactions are available in [2] and [3].
The probability densities and splitting functions are defined in the modified-
minimal-subtraction (MS) scheme.

For simplicity we will call the above equations the evolution equations. They
describe processes where a massless parton (quark or gluon) carrying a fraction
of the longitudinal momentum of the incoming hadron radiates a massless
parton and becomes a (different) massless parton with a different momentum
fraction. The probability for this process to happen is determined by splitting
functions which are computed order-by-order in pQCD. The leading-order
(LO) and next-to-leading order (NLO) splitting functions have been known
for some time [4], [5], [6], [7], [8], [9] and the results are summarized in a
convenient form in [3]. Recently some moments of the next-to-next-to-leading
order (NNLO) splitting functions have been calculated in [10], see also [11]
and [12] . If the x-dependence of the quark and gluon densities in a hadron are
parametrized at one value of µ, (say at µ0,) then the solutions of the evolution
equations with the above LO, NLO or NNLO splitting functions yield the
x dependence of the massless parton densities at a different µ. There is a
second scale in the pQCD theory, the renormalization scale, which appears in
argument of the the running coupling αs. It is usually set to be the same as
the mass factorization scale µ so αs = αs(µ

2).

5

The flavor dependence of the quark and anti-quark densities is governed by
the flavor group, which is SU(2) for the up and down quarks, SU(3) for the
up, down and strange quarks etc. Therefore is is convenient to form flavor
non-singlet and flavor (pure) singlet combinations of densities. The former
have their own evolution equations. The latter mix with the gluons and the
combined evolution is described by matrices which obey coupled integro-
differential equations.

A number of methods to solve the evolution equations for the parton densities
have been proposed, including direct x-space methods, [13], [14], [15], [16], [17],
[18], orthogonal polynomial methods [19], [20], and Mellin-transform methods
[21], [22]. A compilation of parton density sets is available in [23].

The best method, which should be both accurate and fast, depends on region
chosen in x and µ2. Currently the requirements are that the code be able to
evolve densities from a minimum µ2 near 0.26 GeV2 up to a maximum µ2 near
106 GeV2 required for QCD studies for the future Large Hadron Collider at
CERN. The range in x is from a minimum value near 10−5 up to a maximum
near unity. We use the direct x-space method, with the following additional
features.

One of our aims is a better treatment of parton density evolution for ”light”
u, d and s quarks near the heavy flavor thresholds chosen to be at the charm
and the bottom quark masses (mc and mb respectively). The parton density
description must be modified to incorporate new c and b ”heavy” quark den-
sities as the evolution scale increases. The implementation of the NLO and
NNLO matching conditions across heavy flavor thresholds in the variable fla-
vor number schemes (VFNS) [24], [25], [26], [27] involve large cancellations
between various terms in the expressions for the structure functions. Poor nu-
merical accuracy in the solution for the evolution of the parton densities at
small scales would spoil these cancellations and ruin the VFNS predictions.
We achieve the required accuracy by avoiding one numerical integration in
our program so we analytically calculate the weights for the exact LO, the
exact NLO and the approximate NNLO splitting functions. The approximate
NNLO splitting functions are taken from [28],[29], while the relevant opera-
tor matrix elements (OMEs), which provide the matching conditions on the
parton densities across heavy flavor thresholds, are taken from [30].

Since we start the scale evolution from a set of densities (input boundary
conditions) at a low scale µ = µ0 ≪ mc, the running coupling αs(µ

2) is large.
We therefore use the exact solution of the NLO equation for αs and match the
values on both sides of the heavy flavor thresholds to three decimal places. We
mention here that the NNLO matching conditions on αs across heavy flavor
thresholds are available in [31] and [32]. Our program evolves both light and
heavy parton densities in LO, NLO and NNLO from a minimum x equal to

6

10−7 to a maximum x equal to unity, a mimimum µ2 = 0.26 (GeV)2 in LO
and µ2 = 0.40 (GeV)2 in NLO and NNLO and and a maximum µ2 = 106

(GeV)2. Results have been published in [25], [26], [27] and [33]. Here we give
a detailed write up of the program.

7

3 The evolution equations

3.1 Definitions of densities

We evolve combinations of up (u), down (d), strange (s), charm (c) and bot-
tom (b) quark densities which transform appropriately under the flavor group.
Hence we define flavor-non-singlet valence quark densities by

fk−k̄(nf , x, µ2) ≡ fk(nf , x, µ2) − fk̄(nf , x, µ2) , k = u, d . (3.1)

The flavor-singlet quark densities

fS
q (nf , x, µ2) =

nf
∑

k=1

fk+k̄(nf , x, µ2) (3.2)

are defined in terms of the expression

fk+k̄(nf , x, µ2) ≡ fk(nf , x, µ2) + fk̄(nf , x, µ2) , k = u, d, s, c, b , (3.3)

when nf = 5. Then the flavor-non-singlet sea quark densities are

fNS
q (nf , x, µ2) = fk+k̄(nf , x, µ2) − 1

nf

fS
q (nf , x, µ2) . (3.4)

These equations will be discussed further in the next section.

3.2 The evolution equations

A typical evolution equation is that for a flavor-non-singlet parton density
fNS(x, µ2)

∂

∂ ln µ2
fNS(y, µ2) =

αs(µ
2)

2π

1
∫

y

dx

x
PNS(

y

x
, µ2) fNS(x, µ2) , (3.5)

where P NS(y/x, µ2) is a non-singlet splitting function, and αs(µ
2) is the run-

ning coupling.

8

The splitting functions in the evolution equations can be expanded in a per-
turbation series in αs into LO, NLO and NNLO terms as follows

P (z, µ2) = P (0)(z, µ2) + (
αs(µ

2)

2π
)P (1)(z, µ2) + (

αs(µ
2)

2π
)2P (2)(z, µ2). (3.6)

The non-singlet combinations of the qr(q̄r) to qs(q̄s) splitting functions, where
the subscripts r, s denote the flavors of the (anti)quarks q and q̄ respectively
and satisfy r, s = 1, · · · , nf , can be further decomposed into flavor diagonal
parts proportional to δrs and flavor independent parts. In LO there is only
one non-singlet splitting function Pqq but in NLO it is convenient to form two
combinations from Pqq and Pqq̄ as follows

P+ = Pqq + Pqq̄ ,

P− = Pqq − Pqq̄ . (3.7)

These splitting functions are used to evolve two independent types of non-
singlet densities, which will be called plus and minus respectively. They are
given by

f+
i = fNS

q (nf , x, µ2) ,

f−

j = fk−k̄(nf , x, µ2) . (3.8)

Since the general formulae in Eqs. (3.1)-(3.4) are rather involved the easiest
way to explain the indices is by explicitly giving the combinations we use. For
j = 1, 2 we have

f−

1 = u − ū , f−

2 = d − d̄ , (3.9)

which are used for all flavor density sets. Then for three-flavor densities i =
1, 2, 3 and we define

f+
1 = u + ū − Σ(3)/3 , f+

2 = d + d̄ − Σ(3)/3 ,

f+
3 = s + s̄ − Σ(3)/3 , (3.10)

where Σ(3) = fS
q (3) = u + ū + d + d̄ + s + s̄. These densities should be used

for scales µ < mc. For four-flavor densities i = 1, 2, 3, 4 and we define

f+
1 = u + ū − Σ(4)/4 , f+

2 = d + d̄ − Σ(4)/4 ,

f+
3 = s + s̄ − Σ(4)/4 , f+

4 = c + c̄ − Σ(4)/4 , (3.11)

where Σ(4) = fS
q (4) = c + c̄ + Σ(3). These should be used for scales in the

region mc ≤ µ < mb. For five-flavor densites i = 1, 2, 3, 4, 5 and we define

9

f+
1 = u + ū − Σ(5)/5 , f+

2 = d + d̄ − Σ(5)/5 ,

f+
3 = s + s̄ − Σ(5)/5 , f+

4 = c + c̄ − Σ(5)/5 ,

f+
5 = b + b̄ − Σ(5)/5 , (3.12)

where Σ(5) = fS
q (5) = b + b̄ + Σ(4). These should be used for scales µ ≥ mb.

If we define t = ln(µ2/(1 GeV2) then we need to solve the four evolution
equations

∂f+
i (y, t)

∂t
=

αs(t)

2π

1
∫

y

dx

x
P+(

y

x
, t)f+

i (x, t) , (3.13)

∂f−

j (y, t)

∂t
=

αs(t)

2π

1
∫

y

dx

x
P−(

y

x
, t)f−

j (x, t) , (3.14)

∂fg(y, t)

∂t
=

αs(t)

2π

1
∫

y

dx

x

[

Pgq(
y

x
, t)fS

q (x, t) + Pgg(
y

x
, t)fS

g (x, t)
]

, (3.15)

∂fS
q (y, t)

∂t
=

αs(t)

2π

1
∫

y

dx

x

[

Pqq(
y

x
, t)fS

q (x, t) + Pqg(
y

x
, t)fS

g (x, t)
]

, (3.16)

where for µ < mc we set i = 1, 2, 3, j = 1, 2, fS
q = Σ(3) and the gluon is

a three-flavor gluon. When mc ≤ µ < mb, we use i = 1, 2, 3, 4, j = 1, 2,
fS

q = Σ(4) and the gluon is a four-flavor gluon. Finally when µ ≥ mb, we set
i = 1, 2, 3, 4, 5, j = 1, 2, fS

q = Σ(5) and the gluon is a five-flavor gluon. Note
that since NNLO splitting functions are approximate we provide the high and
low estimate for each splitting functions labeled A and B. For all calculations
we use their average so that the error is minimized.

The densities satisfy the momentum conservation sum rule which we write in
terms of the u, d, ..b (anti)-quark and gluon densities as

1
∫

0

dx x
[

u(x, µ2) + ū(x, µ2) + d(x, µ2) + d̄(x, µ2)

+s(x, µ2) + s̄(x, µ2) + [c(x, µ2) + c̄(x, µ2)]θ(µ2 − m2
c)

10

+[b(x, µ2) + b̄(x, µ2)]θ(µ2 − m2
b) + g(x, µ2)

]

= 1 .

(3.17)

Also the quark constituents carry all the charge, isospin, strangeness, charm
and bottom quantum numbers of the nucleon so they also satisfy the other
standard sum rules for the conservation of these quantities, see [2], [3].

11

4 Direct x-space method of solution and initial conditions

4.1 The method

Our choice of the direct x-space method is motivated by the necessity to step
densities across heavy flavor thresholds using LO, NLO and NNLO boundary
conditions. The procedure of doing this with Mellin moments would involve
taking moments of the densities and then inverting moments several times.
The direct x-space method is much more intuitive and straightforward. The
main features of this method are linear interpolation over a grid in x and
second-order interpolation over a grid in t. Let us describe it in more detail
to point out where we differ from the method in [14].

First we consider the x-variable in the evolution and write the right-hand-side
of the evolution equation Eq.(3.5) for the non-singlet density as

I(x0) =
∫

dx

x

x0

x
P
(

x0

x

)

q (x) , (4.1)

where x0 ≤ x ≤ 1 ,

q(x) = xf(x) , (4.2)

and

x0 < x1 < ... < xn < xn+1 ≡ 1 , (4.3)

with q(xn+1) = q(1) ≡ 0. Between grid points xi and xi+1, x is chosen so that

q(x) = (1 − x̄)q(xi) + x̄q(xi+1) , (4.4)

with x̄ = (x− xi)/(xi+1 − xi). Using this relation we convert the integral into
a sum

I(x0) =
n+1
∑

i=0

w(xi, x0)q(xi) , (4.5)

where the weights are (in all orders LO, NLO and NNLO)

w(x0, x0)= S1(s1, s0)

w(xi, x0)= S1(si+1, si) − S2(si, si−1) , (4.6)

12

where si = x0/xi and

S1(u, v)=
v

v − u

v
∫

u

(z − u)P (z)
dz

z
,

S2(u, v)=
u

v − u

v
∫

u

(z − v)P (z)
dz

z
. (4.7)

In the above formula P (z) denotes the splitting function of the correspond-
ing order in αs and type (non-singlet, singlet, etc.) We use the LO and NLO
splitting functions in [19] and the approximations to the NNLO splitting func-
tions from [28] and [29]. For completeness the latter are given in Appendix A.
We have calculated the integrals in Eq.(4.7) analytically and the results are
in the computer program. This yields the formula in Eq.(4.5) describing the
grid for the x variable. Note that the weights w(0), w(1) and w(2) are those for
the exact LO, the exact NLO and the approximate NNLO splitting functions
respectively. Thus, for the singlet case, we have

d(x0Σ(x0))

dt
=

αs

2π

n+1
∑

i=0

[

[w(0)
qq (xi, x0) +

αs

2π
w(1)

qq (xi, x0) + (
αs

2π
)2w(2)

qq (xi, x0)]

× xiΣ(xi)

+[w(0)
qg (xi, x0) +

αs

2π
w(1)

qg (xi, x0) + (
αs

2π
)2w(2)

qg (xi, x0)]

× xig(xi)
]

, (4.8)

where Σ is either Σ(3), Σ(4) or Σ(5) depending on the scale.

Now consider the variation in the variable t. For each xi we pick a grid in
t labelled by distinct points tj . Then, for example, the non-singlet equation
becomes

q
′

(xi, tj) =
αs(tj)

2π

n
∑

k=1

[w
(0)
± (xk, xi) +

αs(tj)

2π
w

(1)
± (xk, xi)

+ (
αs(tj)

2π
)2w

(2)
± (xk, xi)]q(xk, tj) , (4.9)

where q
′

(xi, tj) denotes the derivative with respect to t evaluated at t = tj . In
compact notation this equation can be rewritten as

q
′

j = wqj + S , (4.10)

with S being the sum of the terms on the right hand side of Eq.(4.9) excluding

13

the j-th term.

For t between the grid points tj−1 and tj we interpolate the parton density
using quadratic interpolation as follows:

q(xi, t) = at2 + bt + c . (4.11)

Thus we relate the value of q at the point tj to that of q at the point tj−1 by

q(xi, tj) = q(xi, tj−1) +
1

2
[q

′

(xi, tj) + q
′

(xi, tj−1)]∆tj , (4.12)

where ∆tj = tj − tj−1. This equation can also be written more compactly as

qj = qj−1 +
1

2
(q

′

j−1 + q
′

j)∆tj . (4.13)

The resulting system of two linear equations in Eq.(4.10) and Eq. (4.13) for
qj and q

′

j has the solution

qj =
2qj−1 + (q

′

j−1 + S)∆tj

2 − w∆tj
. (4.14)

Then we find q
′

j from Eq.(4.10). Applying the same procedure to the gluon
and singlet combinations involves four equations because we have to compute
both the densities and their derivatives.

The evolution proceeds from the initial µ2
0 = µ2

LO (or µ2
0 = µ2

NLO) to the first
heavy flavor threshold at the scale µ2 = m2

c . Next the charm density is intro-
duced in NNLO (α2

s-order terms) and all the four-flavor densities are evolved
from the new boundary conditions in Section 4.2. This evolution continues
up to the transition point µ2 = m2

b , where the same procedure is applied to
generate the bottom quark density. From that matching point all five-flavor
densities are evolved up to all higher µ2 scales starting from the boundary
conditions in Appendix B.

Since the weights for the calculation are computed analytically from the LO,
NLO [19] and NNLO ([28],[29]) MS splitting functions we remove possible
instabilities in the numerical integrations. Hence the program is very efficient
and fast. The results from the evolution code have been thoroughly checked
against the tables in the HERA report [16] and they agree to all five decimal
places.

14

4.2 The initial conditions

The GRV98 [22] three-flavor LO and NLO parton density sets contain in-
put formulae at low scales µ < mc which are ideal as initial values for our
parametrizations. Therefore we start our LO evolution using the following
input at µ2

0 = µ2
LO = 0.26 GeV2

xfu−ū(3, x, µ2
0) =xuv(x, µ2

LO)

= 1.239 x0.48 (1 − x)2.72 (1 − 1.8
√

x + 9.5x)

xfd−d̄(3, x, µ2
0) =xdv(x, µ2

LO)

= 0.614 (1 − x)0.9 xuv(x, µ2
LO)

x(fd̄(3, x, µ2
0) − fū(3, x, µ2

0)) =x∆(x, µ2
LO)

= 0.23 x0.48 (1 − x)11.3 (1 − 12.0
√

x + 50.9x)

x(fd̄(3, x, µ2
0) + fū(3, x, µ2

0)) =x(ū + d̄)(x, µ2
LO)

= 1.52 x0.15 (1 − x)9.1 (1 − 3.6
√

x + 7.8x)

xfg(3, x, µ2
0) =xg(x, µ2

LO)

= 17.47 x1.6 (1 − x)3.8

xfs(3, x, µ2
0) = xfs̄(3, x, µ2

0) =xs(x, µ2
LO)

=xs̄(x, µ2
LO) = 0 . (4.15)

Here ∆ ≡ d̄ − ū is used to construct the non-singlet combination.

We start the corresponding NLO evolution using the following GRV98 input
at µ2

0 = µ2
NLO = 0.40 GeV2

xfu−ū(3, x, µ2
0) =xuv(x, µ2

NLO)

= 0.632 x0.43 (1 − x)3.09 (1 + 18.2x)

xfd−d̄(3, x, µ2
0) =xdv(x, µ2

NLO)

= 0.624 (1 − x)1.0 xuv(x, µ2
NLO)

x(fd̄(3, x, µ2
0) − fū(3, x, µ2

0)) =x∆(x, µ2
NLO)

= 0.20 x0.43 (1 − x)12.4 (1 − 13.3
√

x + 60.0x)

x(fd̄(3, x, µ2
0) + fū(3, x, µ2

0)) =x(ū + d̄)(x, µ2
NLO)

= 1.24 x0.20 (1 − x)8.5 (1 − 2.3
√

x + 5.7x)

xfg(3, x, µ2
0) =xg(x, µ2

NLO)

= 20.80 x1.6 (1 − x)4.1

xfs(3, x, µ2
0) = xfs̄(3, x, µ2

0) =xs(x, µ2
NLO)

=xs̄(x, µ2
NLO) = 0. (4.16)

15

We start the corresponding NNLO evolution using the same NLO input and
starting scale as above.

4.3 The calculation of the running coupling

The heavy quark masses mc = 1.4 GeV2, mb = 4.5 GeV2 are used throughout
the calculation. We also use the exact solution (as opposed to a perturbative
solution in inverse powers of ln(µ2/Λ2)) of the differential equation

d αs(µ
2)

d ln(µ2)
= −β0

4π
α2

s(µ
2) − β1

16π2
α3

s(µ
2) , (4.17)

for the running coupling αs(µ
2). Here β0 = 11−2nf/3 and β1 = 102−38nf/3.

Another way of writing this equation is

ln
µ2

(Λ̃
(nf)
EXACT)2

=
4π

β0αs(µ2)
− β1

β2
0

ln

[

4π

β0αs(µ2)
+

β1

β2
0

]

. (4.18)

The values for Λ̃
(nf)
EXACT are carefully chosen to obtain accurate matching of αs

at the scales m2
c and m2

b . We used the values Λ̃
(3,4,5,6)
EXACT = 299.4, 246, 167.7, 67.8

MeV/c2 respectively in the exact formula (which yields αEXACT
s (m2

Z) = 0.114,
αEXACT

s (m2
b) = 0.205, αEXACT

s (m2
c) = 0.319, αEXACT

s (µ2
NLO) = 0.578) and

Λ
(3,4,5,6)
LO = 204, 175, 132, 66.5 MeV/c2 respectively (which yields αLO

s (m2
Z)

= 0.125, αLO
s (m2

b) = 0.232, αLO
s (m2

c) = 0.362, αLO
s (µ2

LO) = 0.763) for the
LO formula (where β1 = 0). There is a NNLO discontinuity of aproximately
two parts in one thousand in the running coupling across heavy flavor thresh-
olds [31], [32]. We have ignored this effect to focus on the numerically more
significant matching of the flavor densities.

4.4 The evolution process

Three flavor evolution proceeds from the initial µ2
0 to the scale µ2 = m2

c = 1.96
(GeV2)2. At this point the charm density is then defined by

fc+c̄(nf + 1, m2
c) = a2

s(nf , m
2
c)
[

ÃPS
Qq(1) ⊗ fS

q (nf , m
2
c)

+ÃS
Qg(1) ⊗ fS

g (nf , m
2
c)
]

, (4.19)

with nf = 3 and as = αs/4π. We have suppressed the x dependence to make
the notation more compact. The ⊗ symbol denotes the convolution integral

16

f ⊗ g =
∫

f(x/y)g(y)dy/y, where x ≤ y ≤ 1. The OME’s ÃPS
Qq(µ

2/m2
c),

ÃS
Qg(µ

2/m2
c) are given in [30] and are also listed in Appendix B. The rea-

son for choosing the matching scale µ at the mass of the charm quark mc is
that all the ln(µ2/m2

c) terms in the OME’s vanish at this point leaving only
the nonlogarithmic pieces in the order α2

s OME’s to contribute to the right-
hand-side of Eq.(4.19). Hence the LO and NLO charm densities vanish at the
scale µ = mc. The NNLO charm density starts off with a finite x-dependent
shape in order α2

s. Note that we then order the terms on the right-hand-side
of Eq. (4.19) so that it contains a product of NLO OME’s and LO parton
densities. The result is then of order α2

s and should be multiplied by order α0
s

coefficient functions when forming the deep inelastic structure functions.

The four-flavor gluon density is also generated at the matching point in the
same way. At µ = mc we define

fS
g (nf + 1, m2

c) = fS
g (nf , m

2
c)

+a2
s(nf , m

2
c)
[

AS
gq,Q(1) ⊗ fS

q (nf , m
2
c) ,

+AS
gg,Q(1) ⊗ fS

g (nf , m
2
c)
]

. (4.20)

The OME’s AS
gq,Q(µ2/m2

c), AS
gg,Q(µ2/m2

c) are given in [30] and are also listed
in the Appendix B. The four-flavor light quark (u,d,s) densities are generated
using

fk+k̄(nf + 1, m2
c) = fk+k̄(nf , m

2
c)

+a2
s(nf , m

2
c)A

NS
qq,Q(1) ⊗ fk+k̄(nf , m

2
c) . (4.21)

The OME ANS
qq,Q(µ2/m2

c) is given in [30] (as well as in Appendix B) and the
total four-flavor singlet quark density folows from the sum of Eqs. (4.19) and
(4.21). In Eqs. (4.20) and (4.21) we set nf = 3. The remarks after Eq. (4.19)
are relevant here too.

Next the resulting four-flavor densities are evolved using the four-flavor weights
in either LO, NLO and NNLO up to the scale µ2 = m2

b = 20.25 (GeV2)2. The
bottom quark density is then generated at this point using

fb+b̄(nf + 1, m2
b)= a2

s(nf , m
2
b)
[

ÃPS
Qq(1) ⊗ fS

q (nf , m
2
b)

+Ã
(S)
Qg(1) ⊗ fS

g (nf , m
2
b)
]

, (4.22)

and the gluon and light quark densities (which now include charm) are gener-
ated using Eqs.(4.19)-(4.21) with nf = 4 and replacing m2

c by m2
b . Therefore

only the nonlogarithmic terms in the order a2
s OME’s contribute to the match-

ing conditions on the bottom quark density. Then all the densities are evolved

17

up to higher µ2 as a five-flavor set with either LO, NLO and NNLO splitting
functions. This is valid until µ = mt ≈ 175 GeV2 above which one should
switch to a six-flavor set. We do not implement this step because the top
quark density would be extremely small.

The procedure outlined above generates a full set of parton densities (gluon,
singlet, non-singlet light and heavy quark densities,) for any x and µ2 from the
three-flavor LO, NLO and NNLO inputs in Eqs.(4.15) and (4.16). Note that
we have used µ2 for the factorization and renormalization scales in the above
discussion. In the computer program we use the notation that Q2 denotes
these scales, since this is done in all the previous computer codes for the
parton densities.

18

5 Input parameter description and usage

To prepare the program for use unpack the distribution package adens-24.tar.gz

by typing tar -xzf adens-24.tar.gz. The resulting directory will contain the fol-
lowing files

head.h

main.h

main.c

l-a-w.c

nl-a-w.c

alpha.c

init.c

polylo.c

intpol.c

evolver.c

thresh.c

a-coefs.c

loader.c

quadrat.c

daind.c

integrands.c

grids.c

weights.c

nnl-a-w.c

wgplg.c

evolution_parameters.input

makefile

my_howto.tex

sample.out

To build the executable on a machine with a gcc compiler type make . The
executable named adens.x will be produced. To run the code just run the file
adens.x. Some debugging information may appear on the standard output.

Here is the parameter file (evolution parameters.input) explanation with
default values shown:

19

0.204e0 LambdaLO-3 LO Λ for Nf =3

0.175e0 LambdaLO-4 LO Λ for Nf =4

0.132e0 LambdaLO-5 LO Λ for Nf =5

0.306e0 LambdaNLO3 NLO Λ for Nf =3

0.257e0 LambdaNLO4 NLO Λ for Nf =4

0.1734e0 LambdaNLO5 NLO Λ for Nf =5

0.2994e0 LambdaENLO3 Exact Λ for Nf =3

0.246e0 LambdaENLO4 Exact Λ for Nf =3

0.1677e0 LambdaENLO5 Exact Λ for Nf =3

0.40e0 Qinitial2 Initial Q2 to start evolution

1.96e0 QcharmMass Mass of first heavy quark c

20.25e0 QbottomMass Mass of second heavy quark b

1.96e0 QcharmThreshold Charm threshold

1.96e0 AlphaCharmThreshold C threshold used for αs

20.25e0 QbottomThreshold Bottom threshold

20.25e0 AlphaQbottomThreshold B threshold used for αs

1000.0e0 Qfinal2 Final Q2

130 tGridSize Q2 grid size

200 xGridSize x grid size

130 xGridSplit x split between log and linear

1.0e-5 xInitial x initial

0.2e0 xSplit x at the split btw log and linear

1.00e0 xFinal x final (always 1)

0 DebugLevel Error message detail (0-5)

1 GraphVsX Plotting data files are versus x (1)
or Q2 (0)

1 Order LO/NLO/NNLO for 0,1,2

0 DoFortran Produce (1) or no (0) data files for
CSN/BMSN Fortran programs
(1-yes, 0-no)

1 AlphaDoSeparateThreshold Use separate thresholds for αs (1-
yes, 0-no)

20

1 AlphaUseExact Use exact GRV98-style αs (1-yes,
0-no)

0 ThreeFlavorMode Calculate GRV98-style densities
with no heavy flavors (1-yes, 0-
no)

0 GraphAll Plot all data points (1-yes, 0-no)

0 NNLOmultiOrderCHARM Use our proper order NNLO
heavy flavors (1-yes, 0-no)

1 DoBottomThreshold Generate bottom (1-yes, 0-no)

0 LoadWeightsMadeBefore Use ready weights if available (1-
yes, 0-no)

1 DoNotDumpWeights Dump weight for future use as the
option above (1-yes, 0-no)

0 NLO4NNLO Use NLO weights for NNLO cal-
culation (1-yes, 0-no)

The first set of Lambdas are used for LO calculations. The second set are used
for NLO and NNLO calculations if the exact αs is not requested (AlphaUse-
Exact=0). The next set (LambdaENLO3, LambdaENLO4, LambdaENLO5)
are used for the exact solution of the differential equation for αs as proposed
in the GRV98 paper [22]. The code that calculates the exact αs might use its
own set of flavor thresholds (which means that the number of flavors used for
αs can be reset independently from the regular heavy flavor threshold as done
in [22]).

Next we give the Q2 limits and the heavy masses: the initial and final Q2, the
charm and bottom masses (used in threshold calculations), the heavy flavor
thresholds and the separate αs thresholds. Next follow the grid sizes in x and
Q2 together with x initial and final (always 1) and the switch point between
logarithmic and linear grids in the x dimension. The x grid always starts as
logarithmic and then becomes linear at higher x, usually at a value of the
order of 0.1 (xGridSplit parameter).

The last group of parameters contains various control values that set the modes
of the computation:
DebugLevel , controls the amount of generated error, warning and information
messages,
GraphVsX , controls the printing of the output data for plotting (first column
is either x or Q2, then subsequent columns will contain density values for var-
ious Q2 or x),

21

Order, sets calculation order (use 0,1,2 for LO,NLO,NNLO),
DoFortran, sets whether to dump interpolated densities on a special grid for
future use in Fortran code for the calculation of structure functions ; CSN and
BMSN refer to VFNS schemes which are explained in [25],
AlphaDoSeparateThreshold, sets whether we use a separate threshold for αs

(used, for instance for GRV98 set where nf for densities is always 3 and nf

for αs goes from 3 to 5,
AlphaUseExact, sets whether to use exact (differential equation solution) αs

for NLO and NNLO calculation,
ThreeFlavorMode, sets whether to run GRV98 mode (no heavy flavors, nf = 3
for all Q2),
GraphAll, controls the amount of graphing and printing output (either all data
points or the special grid defined in the file main.h, that contains some fa-
vorite values (for more see Section 7)),
NNLOmultiOrderCHARM, activates NNLO threshold calculation using proper
order combinations (this mode requires one to first run the LO and NLO cal-
culations),
DoBottomThreshold, enables the bottom density,
LoadWeightsMadeBefore, turns on and off the loading of weights computed in
the prior runs,
DoNotDumpWeights, sets whether to save computed weights to disk for future
use,
NLO4NNLO, sets whether NLO weights are used for the NNLO calculation
(thus having only the boundary condition in NNLO).

Some common parameter settings and typical grid sizes for popular evolutions
are shown in Section 7.

22

6 Description of the program

6.1 Program module summary

main.c The main program, input and output

l-a-w.c Calculation of LO weights

nl-a-w.c Calculation of NLO weights

alpha.c Calculation of αs

init.c Definition of initial functions

polylo.c Calculation of polylogarithms

intpol.c Interpolation routine

evolver.c Evolution process subroutine

thresh.c Threshold handling subroutine

a-coefs.c OMEs for thresholds

loader.c Datafile reading subroutine

quadrat.c Gaussian integration subroutine

daind.c Another integration subroutine

integrands.c Heavy flavor integrand calculation routine

grids.c Grid generation routine and

memory management routines

weights.c Weight table handling routine

nnl-a-w.c Calculation of NNLO weights

wgplg.c Calculation of high order polylogarithms

6.2 main.c

subroutines:

none.

The main program module contains input handling from the parameter file, pa-
rameter verification, calls to grid generating routines (MakeXGrid, MakeT-

23

Grid), resets for all density arrays (array q) and their derivatives (array qp).
It also includes calls to the generation of weights (analowgts, ananlowgts

), the calls to evolution and threshold routines (evolver, threshold) that do
the actual work. Also it contains some pre-output density processing and the
results provided in various formats for both viewing and plotting.

6.3 l-a-w.c

subroutines:

int analowgts(int nf,int loadWgts),
int computeLOwgts(int nf),
double sqq(double x,double y),
double sgg(double x,double y).

Analytically computes or reads from the file the LO weights for the evolution
equations.

6.4 nl-a-w.c

subroutines:

int ananlowgts(int nf,int loadWgts),
int computeNLOwgts(int nf),
double s1ff(double x,double y, int nf),
double s2ff(double x,double y, int nf),
double s1fg(double x,double y, int nf),
double s2fg(double x,double y, int nf),
double s1gf(double x,double y, int nf),
double s2gf(double x,double y, int nf),
double s1gg(double x,double y, int nf),
double s2gg(double x,double y, int nf),
double s1ff plus(double x, int nf),
double s1gg plus(double x, int nf),
double s1p(double x,double y, int nf),
double s2p(double x,double y, int nf),
double s1m(double x,double y, int nf),
double s2m(double x,double y, int nf),
double s1p plus(double x, int nf),
double s1m plus(double x, int nf),
double s1gf lim(double sp,double nf),
double s1fg lim(double sp,double nf),
double s2ff lim(double sp,double nf),

24

double s2fg lim(double sp,double nf),
double s2gf lim(double sp,double nf),
double s2gg lim(double sp,double nf),
double s2p lim(double sp,double nf),
double s2m lim(double sp,double nf).

Analytically computes or reads from the file the NLO weights for the evolution
equation. These routines are grouped into 3 kinds: the s1,2xx routines calculate
the regular weights, the s1,2xx lim routines calculate the regular weights called
at 1 and s1,2xx plus do the weights that contain the plus-distributions.

6.5 alpha.c

subroutines:

double alpha(double tt, int nf), double alphae (double tt,int nf).

Calculates LO, NLO and exact running coupling αs using corresponding pa-
rameters from the input file.

6.6 init.c

subroutines:

double initq uv(double xx),
double initq dv(double xx),
double init gl(double xx),
double initq ss(double xx),
double initq del(double xx),
double initq udbar(double xx).

Sets initial values for all parton densities using the GRV98 input for LO and
NLO densities from [22].

6.7 polylo.c

subroutines:

double Li2(double x),

25

double Li3(double x),
double S12(double x).

Calculates these three polylogarithms using a fast routine with Bernouilli num-
bers. .

6.8 intpol.c

subroutines:

double int q(int j,double xx,int it),
double interpolate(double xx,double *xt, double *yt,int points).

Interpolation routines used to calculate densities between grid points and for
integration at the threshold.

6.9 evolver.c

subroutines:

evolver(int it1,int it2,int ic,int ib).

The main routine that performs the evolution between thresholds for all den-
sities. It updates the main density array q and the density derivatives array
qp.

6.10 thresh.c

subroutines:

int threshold(int what,int itt),
int fdens4(double xx,int ittc,double *u,double *d,double *s),
double light charm(double xx,int ittc),
double fcharm(double xx,int ittc),
double fbottom(double xx,int ittc),
double fsigma(double xx,int ittc),
double fgluon(double xx,int ittc),
double fcharm(double xx,int ittc),
double fbottom(double xx,int ittc).

26

Threshold handling routines to implement LO, NLO and NNLO matching con-
ditions for light and heavy densities at the charm and bottom thresholds. The
density routines are calls to convolution integrals that generate new densities
for nf + 1 flavors.

6.11 a-coefs.c

subroutines:

double a1qg(double z,double fs2,double hm2),
double a2qq(double z,double fs2,double hm2),
double a2qg(double z,double fs2,double hm2),
double a2qqns(double z,double fs2,double hm2),
double softq(double z,double fs2,double hm2),
double corq(double z,double fs2,double hm2),
double a2gg(double z,double fs2,double hm2),
double softg(double z,double fs2,double hm2),
double corg1(double fs2,double hm2),
double corg2(double z,double fs2,double hm2),
double a2gq(double z,double fs2,double hm2).

The OME routines used for NNLO threshold matching. These contain the
formulae in Appendix B.

6.12 loader.c

subroutines:

int loadOrd(int what).

Functions to handle threshold datafile loading, saving and verification. This
file allows one the ability to use previously computed density values at the
threshold in a new computation.

27

6.13 quadrat.c

subroutines:

double qadrat(double *x, double a, double b, double (*fx)(double), double e[]),
double lint(double *x, double (*fx)(double), double e[], double x0, double xn,
double f0, double f2, double f3, double f5, double f6, double f7, double f9,
double f14, double hmin, double hmax, double re, double ae).

Backup integration routine used as a check for the actual one used in the
threshold integration.

6.14 daind.c

subroutines:

double daind(double *x,double a,double b, double (*fun)(double),double eps,int
key,int max).

Main Gaussian integration routine, see [34].

6.15 integrands.c

subroutines:

inline double fcharm integrand(double x1),
inline double fgluon integrand(double x1),
inline double fsigma integrand(double x1),
inline double us integrand(double x1),
inline double ds integrand(double x1),
inline double ss integrand(double x1),
inline double fbottom integrand(double x1),
inline double light charm integrand(double x1).

Functions containing integrands for the threshold integration. They use the
density values and the coefficient functions from a-coefs.c to produce the in-
tegrands that are then fed into the Gaussian integration program.

28

6.16 grids.c

subroutines:

int MakeXGrid(void),
int MakeTGrid(void),
int merge(double *a,double *b,int na, int nb,char w),
int check grid(double *a,int n,char w),
int MakeFortranGrid(int test mode),
double **allocate real matrix(int ur, int uc),
void free real matrix(double **m,int ur).

Subroutines for making (and also merging and verifying) the initial grids in
x and Q2 and the final grids for Fortran-code compatible output. The grid
merging is used to combine the evenly spaced grid generated automatically
from the initial and final values with the premade grid containing several x
and Q2 values for plotting and outputting the data. Two routines are added
for deallocating memory.

6.17 weights.c

subroutines:

int readWeights(int nf,int order),
int dumpWeights(int nf,int order).

Routines dealing with loading and saving computed NLO and NNLO weight
tables to do a fast calculation on the same grids. LO weights are not saved as
it is very fast to compute them every time.

6.18 nnl-a-w.c

subroutines:

int anannlowgts(int nf,int loadWgts),
int computeNNLOwgts(int nf),
double nn s1ff(double x,double y, int nf),
double nn s2ff(double x,double y, int nf),
double nn s1fg(double x,double y, int nf),
double nn s2fg(double x,double y, int nf),
double nn s1gf(double x,double y, int nf),

29

double nn s2gf(double x,double y, int nf),
double nn s1gg(double x,double y, int nf),
double nn s2gg(double x,double y, int nf),
double nn s1ff plus(double x, int nf),
double nn s1gg plus(double x, int nf),
double nn s1p(double x,double y, int nf),
double nn s2p(double x,double y, int nf),
double nn s1m(double x,double y, int nf),
double nn s2m(double x,double y, int nf),
double nn s1p plus(double x, int nf),
double nn s1m plus(double x, int nf),
double nn s1gf lim(double sp,double nf),
double nn s1fg lim(double sp,double nf),
double nn s2ff lim(double sp,double nf),
double nn s2fg lim(double sp,double nf),
double nn s2gf lim(double sp,double nf),
double nn s2gg lim(double sp,double nf),
double nn s2p lim(double sp,double nf),
double nn s2m lim(double sp,double nf).

Analytically computes or reads from files the approximate NNLO weights for
the evolution equations. Here the routines are grouped into three kinds: the
nn s1,2xx routines calculate the regular weights, the nn s1,2xx lim routines
calculate the regular weights called at 1 and nn s1,2xx plus do the weights
that contain the plus-distributions.

6.19 wgplg.c

subroutines:

double wgplg(int n,int p,double x).

The routines which calculate polylogarithms using the method from CERN-
LIB [35]. They are only used for the higher order polylogarithms because the
routines for Li2, Li3 and S12 in polylo.c are faster.

30

7 Results

The code can be used in several modes of operation.

For all of them there is some optimum grid size in x and Q2. Internally, the
grid with the sizes entered in the parameter file is merged with another grid
(that is used for plotting the output data at the end), thus increasing the
resulting grid size. This internal grid size contains all “popular” values, like
x = 0.1, 0.01, 0.001 etc., and is 38 in Q2 and 64 in x. The corresponding values
are located in file main.h (arrays xpr[] and q2pr[]). This grid is then merged
with the automatically generated equidistant grid and the equal values are
weeded out. Shown in the table are the resulting grid sizes as shown in the
output file. The table uses the calculation for all flavors as opposed to the
GRV98-like (only three-flavor) densities. In general, the evolution time grows
quadratically in nx and linearly in nQ2. The numbers we give below are for
an alpha PC with a 21164 processor unit running at 500 MHz, 1 Gbyte of
memory and rated at an Specfp = 20.4.

order nx nQ2 accuracy,digits time,sec

LO 162 96 5 15

NLO 162 96 3 113

NNLO 162 96 3 385

LO 262 136 6 31

NLO 262 136 5 275

NNLO 262 136 5 1021

LO 362 136 6 44

NLO 362 136 6 529

NNLO 362 136 5 1537

1. Set parameters to the following values to produce LO and NLO GRV98-
style fixed three-flavor densities for the whole range of Q2 (only parameters
essential for this calculation are provided, the rest can be set to whatever one
wishes since they control the form of the output and similar features, not the
physically meaningful ones):

31

LO

0.26 Qinitial2

0 Order

1 ThreeFlavorMode

NLO

0.40 Qinitial2

1 Order

1 AlphaUseExact

1 ThreeFlavorMode

2. To generate regular VFNS densities with all heavy flavors (both charm and
bottom) one sets:

LO

0.26 Qinitial2

0 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

0 NNLOmultiOrderCHARM

1 DoBottomThreshold

NLO

0.40 Qinitial2

1 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 AlphaUseExact

0 NNLOmultiOrderCHARM

1 DoBottomThreshold

32

3. To generate VFNS densities involving proper order mixing at heavy thresh-
olds with all heavy flavors (both charm and bottom) but without using NNLO
weights (as done in our previous papers [25], [26], [27], [33]) one sets:

LO

0.26 Qinitial2

0 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 DoBottomThreshold

NLO

0.40 Qinitial2

1 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 AlphaUseExact

1 DoBottomThreshold

NNLO

0.40 Qinitial2

2 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 AlphaUseExact

1 NNLOmultiOrderCHARM

1 DoBottomThreshold

1 NLO4NNLO

In this mode it is necessary to generate LO and NLO sets by running the
program before running the NNLO set on the same grid! Those will be dumped
in special data files

33

(agrv99lo.BO.threshold, agrv99lo.CH.threshold,
agrv99nlo.BO.threshold, and agrv99nlo.CH.threshold)
that will later be read for the NNLO calculation whenever
NNLOmultiOrderCHARM=1.

4. To generate VFNS densities involving proper order mixing at heavy thresh-
olds with all heavy flavors (both charm and bottom) and using LO, NLO and
NNLO (approximate) weights one sets:

LO

0.26 Qinitial2

0 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 DoBottomThreshold

NLO

0.40 Qinitial2

1 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 AlphaUseExact

1 DoBottomThreshold

NNLO

0.40 Qinitial2

2 Order

0 ThreeFlavorMode

1 AlphaDoSeparateThreshold

1 AlphaUseExact

1 NNLOmultiOrderCHARM

1 DoBottomThreshold

0 NLO4NNLO

34

In this mode it is also necessary to generate LO and NLO sets by running
the program before running the NNLO set on the same grid! Those will be
dumped in special data files
(agrv99lo.BO.threshold, agrv99lo.CH.threshold,
agrv99nlo.BO.threshold, and agrv99nlo.CH.threshold)
that will later be read for NNLO calculation whenever
NNLOmultiOrderCHARM=1.

Program output is arranged in several forms. First, the default output in nor-
mal readable form goes into resLO.dat, resNLO.dat or resNNLO.dat

or for GRV98-mode into resLO3.dat, resNLO3.dat or resNNLO3.dat

depending upon the set calculation order. This file contains the input param-
eters, calculation time and the columns of data versus Q2 and x for all densities
(uv,dv,us,ds,ss,ch and bt, described in previous chapters). Here is the sample:

========================== Q2= 1.960 =======================

Alpha(Q2= 1.96 GeV2)=0.318513 for nf=4

-------------------------- x=0.000010 -----------------------

SI(x= 0.0000100)=3.4695646e+00 GL(x= 0.0000100)=1.3074834e+01

UV(x= 0.0000100)=6.1120367e-03 DV(x= 0.0000100)=3.7959190e-03

US(x= 0.0000100)=5.9818110e-01 DS(x= 0.0000100)=5.9988948e-01

SS(x= 0.0000100)=5.3175774e-01

CH(x= 0.0000100)=0.0000000e+00 BT(x= 0.0000100)=0.0000000e+00

-------------------------- x=0.000020 -----------------------

SI(x= 0.0000200)=3.1153438e+00 GL(x= 0.0000200)=1.1469641e+01

UV(x= 0.0000200)=8.2564168e-03 DV(x= 0.0000200)=5.1210226e-03

US(x= 0.0000200)=5.4149612e-01 DS(x= 0.0000200)=5.4372565e-01

SS(x= 0.0000200)=4.6576141e-01

CH(x= 0.0000200)=0.0000000e+00 BT(x= 0.0000200)=0.0000000e+00

The above sample was produced with GraphAll=0 thus printing only values on
a small grid with minimum Q2 = 1.96 GeV2 and not all values from minimum
Q2 = 0.40 GeV2. For convenience, SI denotes singlet, GL gluon, UV and DV
are valence densities u− ū, d− ū, US, DS, SS are of the q + q̄−Σ(nf)/nf kind
and CH and BT are (c + c̄)/2 and (b + b̄)/2.

For graphing purposes, the output also goes into several datafiles with names
formed as g densityORDER.dat where ORDER is LO, NLO or NNLO
respectively e.g. g glLO.dat or g uvNNLO.dat. Those contains columns of
the particular density with the first column being x or Q2, depending upon
GraphVsX parameter (1-x, 0-Q2). Then the other parameter is varied across
columns. Here is the piece of g cpNLO.dat file. The first column contains
the x value, the second is the charm density for Q2 = 1.96 GeV2 (where it is

35

zero) and then the charm density for Q2 = 2, 3, .. GeV2:

0.0000100000 0.0000000000e+00 1.0468420825e-02 1.3022045486e-01

0.0000200000 0.0000000000e+00 8.8559755303e-03 1.0970003578e-01

0.0000300000 0.0000000000e+00 8.0049032415e-03 9.8909559249e-02

0.0000400000 0.0000000000e+00 7.4395488912e-03 9.1758900075e-02

0.0000500000 0.0000000000e+00 7.0219632243e-03 8.6487022224e-02

0.0000600000 0.0000000000e+00 6.6940248888e-03 8.2352079221e-02

0.0000700000 0.0000000000e+00 6.4257535493e-03 7.8973989377e-02

0.0000800000 0.0000000000e+00 6.1998499386e-03 7.6132631291e-02

0.0000900000 0.0000000000e+00 6.0054517691e-03 7.3690103826e-02

The above sample was produced with GraphVsX=1 thus printing x, not Q2

values in the first column. The GraphAll=0 was also set, thus only nice values
of x are used (0.00001, 0.00002, 0.00003, etc).

Also, if the necessary option (DoFortran=1) is set the output also goes into
the file suitable for reading by a GRV98-like Fortran program that interpolates
the data points and makes parton density functions. This program is used in
structure function calculations (the code is written in Fortran). The datafile
format has eight columns with all densities on the fixed grid (hard-coded into
the both evolution code and the interpolation program) in x and Q2.

The sample follows:

Information line: first

+6.112E-03 +3.796E-03 +5.982E-01 +5.999E-01 +5.318E-01 +1.307E+01

+6.128E-03 +3.806E-03 +6.084E-01 +6.101E-01 +5.419E-01 +1.333E+01

+6.303E-03 +3.912E-03 +7.251E-01 +7.268E-01 +6.581E-01 +1.634E+01

+6.440E-03 +3.996E-03 +8.260E-01 +8.278E-01 +7.586E-01 +1.901E+01

+6.553E-03 +4.064E-03 +9.151E-01 +9.169E-01 +8.473E-01 +2.140E+01

+6.649E-03 +4.122E-03 +9.949E-01 +9.967E-01 +9.269E-01 +2.357E+01

+6.731E-03 +4.172E-03 +1.067E+00 +1.069E+00 +9.990E-01 +2.556E+01

+6.804E-03 +4.216E-03 +1.134E+00 +1.135E+00 +1.065E+00 +2.740E+01

+6.869E-03 +4.255E-03 +1.195E+00 +1.197E+00 +1.126E+00 +2.910E+01

+6.927E-03 +4.291E-03 +1.252E+00 +1.253E+00 +1.183E+00 +3.070E+01

Sample pictures of bottom densities are provided in [26] and also below in
Figs. 1 - 4.

36

8 Error code descriptions

Program error code description:

message filename refer to

Threshold LO datafile
is missing

loader.c NNLO calculation with
proper orders requires the
datafile from a previous run
in LO

Threshold NLO
datafile is missing

loader.c NNLO calculation with
proper orders requires the
datafile from a previous run
in NLO

Wrong Multicharm
factor

main.c NNLOmultiOrderCHARM
should be 1 or 0

Wrong order factor several modules should be 0,1,2 for LO,
NLO, NNLO

File evolu-
tion parameters.input
does not exist

main.c find the file and put into
working directory

Wrong INI
Q2:increase it!

main.c order and initial Q2 are in-
compatible

Wrong INI
Q2:decrease it!

main.c order and initial Q2 are in-
compatible

Evolver: dont know
how to proceed

main.c wrong doBottom factor

Wrong Alpha switch
factor!

main.c check AlphaDoSepa-
rateThreshold value

Wrong order factor
while graphing

main.c check Order to be 0,1,2

Wrong graphing fac-
tor

main.c check GraphAll value to be
0,1

Wrong loadWgts fac-
tor

l-a-w.c, nl-a-w.c check loadWgts to be 0,1

37

9 Conclusions

We have presented a multifunctional code for the direct x-space method of
solving the spin-averaged evolution equations for parton densities. The dis-
tinctive features of this code include analytic computation of the LO, NLO
and NNLO weights, NNLO heavy flavor threshold matching and NNLO evo-
lution.

The code is very fast and accurate. For example for grid sizes not exceeding
200 in Q2 and 150 in x the NLO calculation with full weighs computed for
three values of nf and up to five decimal accuracy has a runtime well below
200 seconds. Also it is the only code that does the proper NNLO evolution
with NNLO heavy flavor matching conditions.

The program is also easy to use and complete documentation is available. The
code is well-tested both on specific test functions (e.g. see [16]) and on actual
densities (e.g. see [25]) in all (LO, NLO and NNLO) orders.

10 Acknowledgments

The work was partially supported by the National Science Foundation grant
PHY-9722101. We thank Michael Botje for valuable comments on his method
of solving the evolution equations and providing us with his evolution code.
We also thank Andreas Vogt for help with testing the code in NNLO and for
providing comparison data. Thanks are also due to Brian Harris for testing
the code and comments on the manuscript.

38

A Appendix A

Here we give the NNLO parametrizations of the splitting functions from [29].
Note that L0 = ln z and L1 = ln(1 − z).

First the parametrizations for the non-singlet splitting functions P
(2)±
NS are:

P
(2)−
NS,A(z)= 1185.229 (1 − z)−1

+ + 1365.458 δ(1 − z) − 157.387 L2
1 − 2741.42 z2

− 490.43 (1 − z) + 67.00 L2
0 + 10.005 L3

0 + 1.432 L4
0

+ Nf {−184.765 (1 − z)−1
+ − 184.289 δ(1 − z) + 17.989 L2

1 + 355.636 z2

− 73.407 (1 − z)L1 + 11.491 L2
0 + 1.928 L3

0} + P
(2)
NS,2(z),

P
(2)−
NS,B(z)= 1174.348 (1 − z)−1

+ + 1286.799 δ(1 − z) + 115.099 L2
1 + 1581.05 L1

+ 267.33 (1 − z) − 127.65 L2
0 − 25.22 L3

0 + 1.432 L4
0

+ Nf {−183.718 (1 − z)−1
+ − 177.762 δ(1 − z) + 11.999 L2

1 + 397.546 z2

+ 41.949 (1 − z) − 1.477 L2
0 − 0.538 L3

0} + P
(2)
NS,2(z), (A.1)

and

P
(2)+
NS,A(z)= 1183.762 (1 − z)−1

+ + 1347.032 δ(1 − z) + 1047.590 L1 − 843.884 z2

− 98.65 (1 − z) − 33.71 L2
0 + 1.580 (L4

0 + 4L3
0)

+ Nf {−183.148 (1 − z)−1
+ − 174.402 δ(1 − z) + 9.649 L2

1 + 406.171 z2

+ 32.218 (1 − z) + 5.976 L2
0 + 1.60 L3

0} + P
(2)
NS,2(z),

P
(2)+
NS,B(z)= 1182.774 (1 − z)−1

+ + 1351.088 δ(1 − z) − 147.692 L2
1 − 2602.738 z2

− 170.11 + 148.47 L0 + 1.580 (L4
0 − 4 L3

0)

+ Nf {−183.931 (1 − z)−1
+ − 178.208 δ(1 − z) − 89.941 L1 + 218.482 z2

+ 9.623 + 0.910 L2
0 − 1.60 L3

0} + P
(2)
NS,2(z) . (A.2)

The parametrizations for P
(2),S
NS (z) and P

(2)
PS (z) are

P
(2)S
NS,A(z)=Nf {(1 − z)(−1441.57 z2 + 12603.59 z − 15450.01) + 7876.93 zL2

0

− 4260.29 L0 − 229.27 L2
0 + 4.4075 L3

0}
P

(2)S
NS,B(z)=Nf {(1 − z)(−704.67 z3 + 3310.32 z2 + 2144.81 z − 244.68)

+ 4490.81 z2L0 + 42.875 L0 − 11.0165 L3
0}, (A.3)

and

P
(2)
PS,A(z)= Nf {(1 − z)(−229.497 L1 − 722.99 z2 + 2678.77− 560.20 z−1)

39

+ 2008.61 L0 + 998.15 L2
0 − 3584/27 z−1L0} + P

(2)
PS,2(z),

P
(2)
PS,B(z)= Nf {(1 − z)(73.845 L2

1 + 305.988 L1 + 2063.19 z − 387.95 z−1)

+ 1999.35 zL0 − 732.68 L0 − 3584/27 z−1L0}
+ P

(2)
PS,2(z), (A.4)

with

P
(2)
PS,2(z)=N2

f {(1 − z)(−7.282 L1 − 38.779 z2 + 32.022 z − 6.252 + 1.767 z−1)

+ 7.453 L2
0} . (A.5)

Next we show the parametrizations of the off-diagonal singlet splitting func-
tions:

P
(2)
qg,A(z)=Nf {−31.830 L3

1 + 1252.267 L1 + 1999.89 z + 1722.47 + 1223.43 L2
0

− 1334.61 z−1 − 896/3 z−1L0} + P
(2)
qg,2(z),

P
(2)
qg,B(z)=Nf {19.428 L4

1 + 159.833 L3
1 + 309.384 L2

1 + 2631.00 (1 − z)

− 67.25 L2
0 − 776.793 z−1 − 896/3 z−1L0} + P

(2)
qg,2(z), (A.6)

with

P
(2)
qg,2(z)=N2

f {−0.9085 L2
1 − 35.803 L1 − 128.023 + 200.929 (1 − z)

+ 40.542 L0 + 3.284 z−1} , (A.7)

and

P
(2)
gq,A(z)= 13.1212 L4

1 + 126.665 L3
1 + 308.536 L2

1 + 361.21 − 2113.45 L0

− 17.965 z−1L0 + Nf {2.4427 L4
1 + 27.763 L3

1 + 80.548 L2
1

− 227.135 − 151.04 L2
0 + 65.91 z−1L0} + P

(2)
gq,2(z),

P
(2)
gq,B(z)= −4.5108 L4

1 − 66.618 L3
1 − 231.535 L2

1 − 1224.22 (1 − z) + 240.08 L2
0

+ 379.60 z−1(L0 + 4) + Nf{−1.4028 L4
1 − 11.638 L3

1 + 164.963 L1

− 1066.78 (1 − z) − 182.08 L2
0 + 138.54 z−1(L0 + 2)}

+ P
(2)
gq,2(z), (A.8)

with

P
(2)
gq,2(z)=N2

f {1.9361 L2
1 + 11.178 L1 + 11.632 − 15.145 (1 − z) + 3.354 L0

− 2.133 z−1} . (A.9)

40

Last we show the parametrizations of the diagonal singlet splitting functions

P
(2)
gg,A(z)= 2626.38 (1 − z)−1

+ + 4424.168 δ(1 − z) − 732.715 L2
1 − 20640.069 z

− 15428.58 (1 − z2) − 15213.60 L2
0 + 16700.88 z−1 + 2675.85 z−1L0

+ Nf {−415.71 (1 − z)−1
+ − 548.569 δ(1 − z) − 425.708 L1 + 914.548 z2

− 1122.86 − 444.21 L2
0 + 376.98 z−1 + 157.18 z−1L0}

+ P
(2)
gg,2(z),

P
(2)
gg,B(z)= 2678.22 (1 − z)−1

+ + 4590.570 δ(1 − z) + 3748.934 L1 + 60879.62 z

− 35974.45 (1 + z2) + 2002.96 L2
0 + 9762.09 z−1 + 2675.85 z−1L0

+ Nf {−412.00 (1 − z)−1
+ − 534.951 δ(1 − z) + 62.630 L2

1 + 801.90

+ 1891.40 L0 + 813.78 L2
0 + 1.360 z−1 + 157.18 z−1L0}

+ P
(2)
gg,2(z), (A.10)

with

P
(2)
gg,2(z)=N2

f {−16/9 (1 − z)−1
+ + 6.4882 δ(1 − z) + 37.6417 z2 − 72.926 z

+ 32.349 − 0.991 L2
0 + 2.818 z−1} . (A.11)

41

B Appendix B

Shown below are the renormalized OME’s used for threshold matching calcula-
tions in NLO and NNLO (they correspond to the unrenormalized expressions
given in Appendix C of [36] and in Appendix A of [30]). All OME’S have been
renormalized in the MS-scheme.

In particular the renormalized coupling αs is presented in the above scheme
for nf +1 light flavors. Here the heavy quark H = (c, b) is treated on the same
footing as the light flavors and it is not decoupled from the running coupling
in the VFNS approach. The (αs/4π)2 coefficient in the heavy-quark OME ÃPS

Hq

is given by

Ã
PS,(2)
Hq

(

m2

µ2

)

= CFTf

{[

−8(1 + z) ln z − 16

3z
− 4

+4z +
16

3
z2

]

ln2 m2

µ2
+

[

8(1 + z) ln2 z −
(

8 + 40z +
64

3
z2

)

ln z

−160

9z
+ 16 − 48z +

448

9
z2

]

ln
m2

µ2

+(1 + z)

[

32S1,2(1 − z) + 16 ln zLi2(1 − z) − 16ζ(2) ln z

−4

3
ln3 z

]

+

(

32

3z
+ 8 − 8z − 32

3
z2

)

Li2(1 − z)

+

(

−32

3z
− 8 + 8z +

32

3
z2

)

ζ(2) +

(

2 + 10z +
16

3
z2

)

ln2 z

−
(

56

3
+

88

3
z +

448

9
z2

)

ln z − 448

27z
− 4

3
− 124

3
z +

1600

27
z2

}

, (B.1)

The αs/4π and the (αs/4π)2 coefficients of the heavy quark OME’s ÃS
Hg are

Ã
S,(1)
Hg

(

m2

µ2

)

= Tf

[

−4(z2 + (1 − z)2) ln
m2

µ2

]

, (B.2)

and

Ã
S,(2)
Hg

(

m2

µ2

)

=

{

CFTf [(8 − 16z + 16z2) ln(1 − z)

−(4 − 8z + 16z2) ln z − (2 − 8z)]

42

+CATf

[

−(8 − 16z + 16z2) ln(1 − z) − (8 + 32z) ln z

−16

3z
− 4 − 32z +

124

3
z2

]

+ T 2
f

[

−16

3
(z2 + (1 − z)2)

]}

ln2 m2

µ2

+

{

CF Tf

[

(8 − 16z + 16z2)[2 ln z ln(1 − z) − ln2(1 − z) + 2ζ(2)]

−(4 − 8z + 16z2) ln2 z − 32z(1 − z) ln(1 − z)

−(12 − 16z + 32z2) ln z − 56 + 116z − 80z2

]

+CATf

[

(16 + 32z + 32z2)[Li2(−z) + ln z ln(1 + z)]

+(8 − 16z + 16z2) ln2(1 − z) + (8 + 16z) ln2 z

+32zζ(2) + 32z(1 − z) ln(1 − z) −
(

8 + 64z +
352

3
z2

)

ln z

−160

9z
+ 16 − 200z +

1744

9
z2

]}

ln
m2

µ2

+CF Tf

{

(1 − 2z + 2z2)[8ζ(3) +
4

3
ln3(1 − z)

−8 ln(1 − z)Li2(1 − z) + 8ζ(2) ln z − 4 ln z ln2(1 − z)

+
2

3
ln3 z − 8 ln zLi2(1 − z) + 8Li3(1 − z) − 24S1,2(1 − z)]

+z2

[

−16ζ(2) ln z +
4

3
ln3 z + 16 ln zLi2(1 − z) + 32S1,2(1 − z)

]

−(4 + 96z − 64z2)Li2(1 − z) − (4 − 48z + 40z2)ζ(2)

−(8 + 48z − 24z2) ln z ln(1 − z) + (4 + 8z − 12z2) ln2(1 − z)

−(1 + 12z − 20z2) ln2 z − (52z − 48z2) ln(1 − z)

−(16 + 18z + 48z2) ln z + 26 − 82z + 80z2

}

+CATf

{

(1 − 2z + 2z2)[−4

3
ln3(1 − z)

+8 ln(1 − z)Li2(1 − z) − 8Li3(1 − z)] + (1 + 2z + 2z2)

×[−8ζ(2) ln(1 + z) − 16 ln(1 + z)Li2(−z) − 8 ln z ln2(1 + z)

+4 ln2 z ln(1 + z) + 8 ln zLi2(−z) − 8Li3(−z) − 16S1,2(−z)]

+(16 + 64z)[2S1,2(1 − z) + ln zLi2(1 − z)] −
(

4

3
+

8

3
z

)

ln3 z

+(8 − 32z + 16z2)ζ(3) − (16 + 64z)ζ(2) ln z + (16 + 16z2)

×[Li2(−z) + ln z ln(1 + z)] +

(

32

3z
+ 12 + 64z − 272

3
z2

)

Li2(1 − z)

43

−
(

12 + 48z − 260

3
z2 +

32

3z

)

ζ(2) − 4z2 ln z ln(1 − z)

−(2 + 8z − 10z2) ln2(1 − z) +

(

2 + 8z +
46

3
z2

)

ln2 z

+(4 + 16z − 16z2) ln(1 − z) −
(

56

3
+

172

3
z +

1600

9
z2

)

ln z

−448

27z
− 4

3
− 628

3
z +

6352

27
z2

}

, (B.3)

respectively. Now we present the renormalized expressions for the heavy-quark
loop contributions to the light-parton OME’s denoted by Akl,H. The coeffi-
cients of the (αs/4π)2 terms in Aqq,H and Agq,H are

A
NS,(2)
qq,H

(

m2

µ2

)

= CFTf

{[

8

3

(

1

1 − z

)

+

− 4

3
− 4

3
z + 2δ(1 − z)

]

ln2 m2

µ2

+

[

80

9

(

1

1 − z

)

+

+
8

3

1 + z2

1 − z
ln z +

8

9
− 88

9
z

+δ(1 − z)

(

16

3
ζ(2) +

2

3

)]

ln
m2

µ2

+
1 + z2

1 − z

(

2

3
ln2 z +

20

9
ln z

)

+
8

3
(1 − z) ln z +

224

27

(

1

1 − z

)

+

+
44

27
− 268

27
z

+δ(1 − z)

(

−8

3
ζ(3) +

40

9
ζ(2) +

73

18

)}

, (B.4)

and

A
S,(2)
gq,H

(

m2

µ2

)

= CFTf

{[

16

3z
− 16

3
+

8

3
z

]

ln2 m2

µ2

+

[

160

9z
− 160

9
+

128

9
z + (

32

3z
− 32

3
+

16

3
z) ln(1 − z)

]

ln
m2

µ2

+
4

3

(

2

z
− 2 + z

)

ln2(1 − z) +
8

9

(

10

z
− 10 + 8z

)

ln(1 − z)

+
1

27

(

448

z
− 448 + 344z

)}

. (B.5)

respectively. The coefficients of the αs/4π and (αs/4π)2 terms in Agg,H are

44

A
S,(1)
gg,H

(

m2

µ2

)

= Tf

[

4

3
δ(1 − z) ln

m2

µ2

]

, (B.6)

and

A
S,(2)
gg,H

(

m2

µ2

)

=

{

CF Tf

[

8(1 + z) ln z +
16

3z
+ 4 − 4z − 16

3
z2

]

+CATf

[

8

3

(

1

1 − z

)

+

+
8

3z
− 16

3
+

8

3
z − 8

3
z2

]

+T 2
f

[

16

9
δ(1 − z)

]}

ln2 m2

µ2

+

{

CF Tf

[

8(1 + z) ln2 z + (24 + 40z) ln z − 16

3z
+ 64 − 32z

−80

3
z2 + 4δ(1 − z)

]

+ CATf

[

16

3
(1 + z) ln z +

80

9

(

1

1 − z

)

+

+
184

9z
− 232

9
+

152

9
z − 184

9
z2 +

16

3
δ(1 − z)

]}

ln
m2

µ2

+CF Tf

{

4

3
(1 + z) ln3 z + (6 + 10z) ln2 z + (32 + 48z) ln z

−8

z
+ 80 − 48z − 24z2 − 15δ(1 − z)

}

+CATf

{

4

3
(1 + z) ln2 z +

1

9
(52 + 88z) ln z − 4

3
z ln(1 − z)

+
1

27

[

224

(

1

1 − z

)

+

+
556

z
− 628 + 548z − 700z2

]

+
10

9
δ(1 − z)

}

, (B.7)

respectively.

The definitions for the polylogarithms Lin(z) and the Nielsen functions Sn,p(z),
which appear in the above expressions, can be found in [37].

45

References

[1] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977); V.N. Gribov and
L.N.Lipatov, Sov. J. Nucl. Phys. 15 438, 675, (1972); Yu. Dokshitser, Sov.
Phys. JETP 46, 641 (1977).

[2] R.G. Roberts, in The Structure of the Proton, Cambridge University Press
(1993).

[3] R.K. Ellis, W.J. Stirling and B.R. Webber, in QCD and Collider Physics,

Cambridge University Press (1996), Chapter 4.3.

[4] H. Georgi and H.D. Politzer, Phys. Rev. D9, 416 (1974).

[5] D.J. Gross and F. Wilczek, Phys. Rev D9, 980 (1974).

[6] E. G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B129, 66 (1977)
Erratum B139, 545 (1978); ibid B152, 493 (1979).

[7] A. Gonzales-Arroyo, C. Lopez and F.J. Yndurain, Nucl. Phys. B153, 161
(1979); A. Gonzales-Arroyo and C. Lopez, Nucl. Phys. B166, 429 (1980).

[8] E.G. Floratos, C. Kounnas and R. Lacaze, Phys. Lett. B98, 89, 285, (1981);
ibid. Nucl. Phys. B192, 417 (1981).

[9] R. Hamberg and W.L. van Neerven, Nucl. Phys. B359, 343 (1991).

[10] S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B427, 41
(1994), [hep-ph/9411260]; S.A. Larin et al., Nucl. Phys. B492, 338 (1997), [hep-
ph/9605317].

[11] J.F. Bennett and J.A Gracey, Nucl. Phys. B417, 241 (1998); J.A. Gracey, Phys.
Lett. B322, 141 (1994), [hep-ph/9401214].

[12] W.L. van Neerven and A. Vogt, [hep-ph/9907472].

[13] M. Miyama and S. Kumano, Comput. Phys. Commun. 94, 185 (1996), [hep-
ph/9508246]; M. Hirai, S. Kumano and M. Miyama, Comput. Phys. Commun.
108, 38 (1998), [hep-ph/9707220].

[14] M. Botje, QCDNUM16: A fast QCD evolution program, ZEUS N5te 97-066.

[15] C. Pascaud and F. Zomer, H1 Note H1-11/94-404; V. Barone, C. Pascaud and
F. Zomer, [hep-ph/9907512].

[16] J. Blümlein, S. Riemersma, W.L. van Neerven and A. Vogt, Nucl. Phys. B(Proc.
Suppl.) 51C, 96 (1996), [hep-ph/9609217];
J. Blümlein, M. Botje, C. Pascaud, S. Riemersma, W.L. van Neerven, A. Vogt
and F. Zomer, in Proceedings of the Workshop on Future Physics at HERA

edited by G. Ingelman, A. De Roeck and R. Klanner, Hamburg, Germany, 25-
26 Sep. 1995, p. 23, DESY 96-199, [hep-ph/9609400].

46

[17] A.D. Martin, R.G. Roberts, W.J. Stirling and R. Thorne, Eur. Phys. J. C4,
463 (1998), [hep-ph/9803445].

[18] H.L. Lai, J. Huston, S. Kuhlmann, J. Morf́ın, F. Olness, J. Owens, J. Pumplin
and W.K. Tung, [hep-ph/9903282].

[19] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980); W.
Furmanski and R. Petronzio, Phys. Lett. B97 437, (1980); ibid. Z. Phys. C11,
293 (1982); the relevant NLO formulae are presented in a convenient form in
ref. 2.

[20] C. Coriano and S. Savkli, Comput. Phys. Commun. 118, 236 (1999), [hep-
ph/9803336].

[21] S. Riemersma, unpublished.

[22] M. Glück, E. Reya and A. Vogt, Eur. Phys. J. C5, 461 (1998), [hep-ph/9806404].

[23] H. Plothow-Besch, PDFLIB version 8.04, available from CERNLIB at
http://wwwinfo.cern.ch/asdoc.

[24] M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Phys. Rev. D50,
3102 (1994), [hep-ph/9312319].

[25] A. Chuvakin, J. Smith and W. van Neerven, Phys. Rev. D61, 096004 (2000),
[hep-ph/9910250].

[26] A. Chuvakin, J. Smith and W. van Neerven, Phys.Rev. D62, 036004 (2000),
[hep-ph/0002011].

[27] A. Chuvakin, J. Smith and B.W. Harris, Eur.Phys.J. C18,547 (2001), [hep-
ph/0010350].

[28] W.L. van Neerven; A. Vogt, [hep-ph/9907472].

[29] W.L. van Neerven; A. Vogt, [hep-ph/0007362].

[30] M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Eur. Phys. J. C1,
301 (1998); Phys. Lett. B411,211 (1997), [hep-ph/9612398].

[31] W. Bernreuther and W. Wetzel, Nucl. Phys. B197, 228 (1982); Erratum-ibid
513, 758 (1998); W. Bernreuther, Annals of Physics, 151, 127 (1983).

[32] S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, Nucl. Phys. B438,
278 (1995), [hep-ph/9411260]; see also K.G. Chetyrkin, B.A. Kniehl and M.
Steinhauser, Phys. Rev. Lett. 79, 2184 (1997), [hep-ph/9706430].

[33] A. Chuvakin, J. Smith, Phys. Rev. D61, 114018 (2000); [hep-ph/9911504].

[34] R. Piessens, Angew. Informatik 9, 399 (1973).

[35] K.S. Kölbig, J.A. Mignaco and E. Remiddi, BIT 10, 38 (1971);
K.S. Kölbig, SIAM J. Math. Anal. 17 1232 (1986);
see http://wwwinfo.cern.ch/asdoc/shortwrupsdir/c31/top.html.

47

[36] M. Buza, Y. Matiounine, J. Smith, R. Migneron, and W.L. van Neerven, Nicl.
Phys. B472, 611 (1996), [hep-ph/9601302].

[37] L. Lewin, ”Polylogarithms and Associated Functions”, North Holland,
Amsterdam, 1983;
R. Barbieri, J.A. Mignaco and E. Remiddi, Nuovo Cimento 11A (1972) 824;
A. Devoto and D.W. Duke, Riv. Nuovo. Cimento Vol. 7,N. 6 (1984) 1.

48

Figure Captions

Fig. 1. The gluon density xgNNLO(4, x, µ2) in the range 10−5 < x < 1 for
µ2 = 2, 3, 4, 5, 10 and 20 in units of (GeV2)2,

Fig. 2. The singlet density xΣNNLO(4, x, µ2) in the range 10−5 < x < 1 for
µ2 = 2, 3, 4, 5, 10 and 20 in units of (GeV2)2,

Fig. 3. The nonsinglet quark density xσNNLO(4, x, µ2)a, where σ = (u+ ū)/2,
in the range 10−5 < x < 1 for µ2 = 2, 3, 4, 5, 10 and 20 in units of (GeV2)2,

Fig. 4. The charm quark density xcNNLO(4, x, µ2) the range 10−5 < x < 1 for
µ2 = 1.96, 2, 3, 4, 5, 10 and 20 in units of (GeV2)2,

49

